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In this script we are comparing the nezt-step ahead predictions of the SSF
(with and without temporal dynamics) and deepSSF models. We are comparing
the probabilities of movement, habitat selection and next-step selection, and how
they change throughout time.

By comparing the predictions of each process across the entire tracking period
or for each hour of the day, we can critically evaluate the covariates that are used
by the models and allow for model refinement.

As we expected, the deepSSF models outperformed the SSF models on the in-
sample data, which was particularly the case for when the model was trained with
Sentinel-2 spectral bands and slope as the spatial covariates (deepSSF S2). The
performance dropped for out-of-sample data for all models (including SSFs), and
the deepSSF trained with the derived covariates (NDVI, canopy cover, herba-
ceous vegetation and slope) performed worse than the SSF models, and was only
marginally better than a null model, which bears some evidence of overfitting.
However, the deepSSF S2 model, trained on ‘raw’ Sentinel-2 layers rather than
derived quantities, retained greater accuracy than all other approaches for out-
of-sample data, suggesting that these inputs contain more information that is
relevant to buffalo movement and habitat selection than derived quantities like
NDVT and slope.
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Loading packages

library(tidyverse)
packages <- c("amt", "sf", "terra", "beepr", "tictoc", "circular",
"matrixStats", "progress", "paletteer", "slider")

walk(packages, require, character.only = T)

options(scipen = 999) # Prevent scientific notation in plots
0) # Reset

options(scipen

Script setup

Specify the focal id for selecting the in-sample predictions.

focal_id <- 2005

Step selection function probabilities

SSF models fitted with and without temporal dynamics

# create vector of GPS data filenames
validation_ssf <- list.files(path = "outputs/next_step_validation", pattern = "next_step_pro
validation_ids <- substr(validation_ssf, 23, 26)

# import data
validation_ssf_list <- vector(mode = "list", length = length(validation_ssf))

for(i in 1:length(validation_ssf)){
validation_ssf_list[[i]] <- read_csv(paste("outputs/next_step_validation/",
validation_ssf[[i]],
sep = ||||))

# validation ssf list[i]$id <- validation_ ids[il



attr(validation_ssf_list[[i]]$t_, "tzone") <- "Australia/Queensland"
attr(validation_ssf 1ist[[i]]$t2_ , "tzone") <- "Australia/Queensland"

print (sum(is.na(validation_ssf_list[[i]]$prob_next_step_ssf_Op)))

(1] 1
(11 1
(11 1
(11 1
(11 1
(11 1
(11 1
(1] 1
(11 1
(11 1
(11 1
(11 1

(11 1

# check that the data has been imported correctly
# validation_ssf_list

validation_ssf_all <- bind rows(validation_ssf_list)

Lengthening data frames to stack together for plotting



validation_ssf_move <- validation_ssf_all %>%
dplyr: :select(id, x_, y_, t_, x2_, y2_, t2_, hour_t2, yday_t2, year_t2, contains("prob_mov
pivot_longer(cols = contains("movement"),

names_to = "full name",
values_to = "value") %>%
mutate(model = gsub("prob_movement_", "", full_name),

probability = "move",
.after = "full_name")

validation_ssf_habitat <- validation_ssf _all %>
dplyr: :select(id, x_, y_, t_, x2_, y2_, t2_, hour_t2, yday_t2, year_t2, contains("prob_hab
pivot_longer(cols = contains("habitat"),
names_to = "full name",
values_to = "value") %>%
mutate (model = gsub("prob_habitat_", "", full_name),
probability = "habitat",
.after = "full name")

validation_ssf_next_step <- validation_ssf_all %>%
dplyr: :select(id, x_, y_, t_, x2_, y2_, t2_, hour_t2, yday_t2, year_t2, contains("prob_nex
pivot_longer(cols = contains("next_step"),
names_to = "full name",
values_to = "value") %>%
mutate (model = gsub("prob_next_step_", "", full_name),
probability = "next_step",
.after = "full name")

validation_ssf_long <- bind_rows(validation_ssf_move,
validation_ssf_habitat,
validation_ssf_next_step)

head(validation_ssf_long)

# A tibble: 6 x 14
id X_ y_ t_ x2_ y2_ t2_

<dbl> <dbl> <dbl> <dttm> <dbl> <dbl> <dttm>

2005 41969. -1435671. 2018-07-25 11:04:23 41922. -1.44e6 2018-07-25 12:04:39
2005 41969. -1435671. 2018-07-25 11:04:23 41922. -1.44e6 2018-07-25 12:04:39
2005 41922. -1435654. 2018-07-25 12:04:39 41779. -1.44e6 2018-07-25 13:04:17
2005 41922. -1435654. 2018-07-25 12:04:39 41779. -1.44e6 2018-07-25 13:04:17
2005 41779. -1435601. 2018-07-25 13:04:17 41841. -1.44e6 2018-07-25 14:04:39
2005 41779. -1435601. 2018-07-25 13:04:17 41841. -1.44e6 2018-07-25 14:04:39
i 7 more variables: hour_t2 <dbl>, yday_t2 <dbl>, year_t2 <dbl>,

full_name <chr>, model <chr>, probability <chr>, value <dbl>
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deepSSF probabilities

# create vector of GPS data filenames
validation_deepssf <- list.files(path = "outputs/next_step_validation", pattern = "next_step
validation_ids <- substr(validation_deepssf, 25, 28)

# import data
validation_deepssf_list <- vector(mode = "list", length = length(validation_deepssf))

for(i in 1:length(validation_deepssf)){
validation_deepssf_list[[i]] <- read_csv(paste("outputs/next_step_validation/",
validation_deepssf[[i]],
sep = ||||))

# validation_deepssf_list[i]$id <- validation_ids[i]
attr(validation_deepssf_list[[i]]$t_, "tzone") <- "Australia/Queensland"
attr(validation_deepssf_list[[i]]1$t2_, "tzone") <- "Australia/Queensland"

# To check that the data has been imported correctly
# validation_deepssf_list

validation_deepssf_all <- bind_rows(validation_deepssf_list)

Lengthening data frames to stack together for plotting

validation_deepssf_long <- validation_deepssf_all %>/
dplyr: :select(id, x_, y_, t_, x2_, y2_, t2_, hour_t2, yday_t2, year_t2, contains("probs"))

pivot_longer(cols = contains("probs"),

names_to = "full_name",
values_to = "value") %>%
mutate (model = "deepSSF",
probability = gsub("_probs", "", full_name),
.after = "full name")

deepSSF Sentinel 2 probabilities



# create vector of GPS data filenames
validation_deepssf_s2 <- list.files(path = "outputs/next_step_validation", pattern = "next_s
validation_ids <- substr(validation_deepssf_s2, 22, 25)

# import data
validation_deepssf_s2_list <- vector(mode = "list", length = length(validation_deepssf_s2))

for(i in 1:length(validation_deepssf_s2)){
validation_deepssf_s2_list[[i]] <- read_csv(paste("outputs/next_step_validation/",
validation_deepssf_s2[[i]],
sep = "y

# validation_deepssf_s2_list[i]$id <- validation_ids[i]

attr(validation_deepssf_s2_1list[[i]]$t_, "tzone") <- "Australia/Queensland"
attr(validation_deepssf_s2_1ist[[i]]1$t2_, "tzone") <- "Australia/Queensland"

# To check that the data has been imported correctly
# validation_deepssf_s2_list

validation_deepssf_s2_all <- bind_rows(validation_deepssf_s2_list)

Lengthening data frames to stack together for plotting

validation_deepssf_s2_long <- validation_deepssf_s2_all 7>%
dplyr::select(id, x_, y_, t_, x2_, y2_, t2_, hour_t2, yday_t2, year_t2, contains("probs"))
pivot_longer(cols = contains("probs"),

names_to = "full_name",
values_to = "value") %>%
mutate (model = "deepSSF_S2",
probability = gsub("_probs", "", full_name),
.after = "full _name")



Compare the probabilities

Combine the wide data frames

Keep only the relevant columns

validation_ssf_clean <- validation_ssf_all >%
dplyr::select(c(id, x_, y_, t_, t2_, hour_tl, hour_t2, yday_tl, yday_t2,
prob_habitat_ssf_Op, prob_habitat_ssf_2p,
prob_movement_ssf_Op, prob_movement_ssf_2p,

prob_next_step_ssf_Op, prob_next_step_ssf_2p))

validation_deepssf_clean <- validation_deepssf_all %>7
mutate (habitat_deepSSF = habitat_probs,
movement_deepSSF = move_probs,
next_step_deepSSF = next_step_probs,
.keep = "none")

validation_deepssf_s2_clean <- validation_deepssf_s2_all %>%
mutate (habitat_deepSSF_S2 = habitat_probs,
movement_deepSSF_S2 = move_probs,
next_step_deepSSF_S2 = next_step_probs,
.keep = "none")

Combine the data frames

validation_all <- bind cols(validation_ssf clean,
validation_deepssf_clean,
validation_deepssf_s2_clean)

Split in habitat selection, movement and next step probabilities

Function to get the maximum probability

get_max_column <- function(df) {
# Create a new column with the name of the column containing the max value for each row
df$max_column <- apply(df, 1, function(row) {
# Find the column name with the maximum value
col _names <- names(df)



max_col_index <- which.max(row)
return(col names[max_col_ index])

i)

return(df)
}

Calculate which was the maximum probability for each row

Habitat selection

validation_habitat <- validation_all %>% filter(id == 2005) %>%
dplyr: :select(
# id, x_, y_, t_, t2_, hour_t1, hour_t2, yday_t1l, yday_t2,
# grep("habitat", colnames(validation_all)),
# prob_habitat_ssf_Op,
prob_habitat_ssf_2p,
# habitat_deepSSF,
habitat_deepSSF_S2

)
validation_habitat_prop <- get_max_column(validation_habitat)

max_column_counts <- table(validation_habitat_prop$max_column)
max_column_proportions <- prop.table(max_column_counts)

summary_df <- data.frame(
column = names(max_column_counts),
count = as.numeric(max_column_counts),
proportion = as.numeric(max_column_proportions)

)

summary_df

column count proportion
1 habitat_deepSSF_S2 6888 0.6819802
2 prob_habitat_ssf_2p 3212 0.3180198



Movement

validation _movement <- validation_all %>%
dplyr: :select(
# id, x_, y_, t_, t2_, hour_tl, hour_t2, yday_tl, yday_t2,
# grep("movement", colnames(validation_all)),
# prob_movement_ssf_Op,
prob_movement_ssf_2p,
movement_deepSSF,
# movement_deepSSF_S2

)
validation_movement_prop <- get_max_column(validation_movement)

max_column_counts <- table(validation_movement_prop$max_column)
max_column_proportions <- prop.table(max_column_counts)

summary_df <- data.frame(
column = names(max_column counts),
count = as.numeric(max_column_counts),
proportion = as.numeric(max_column_proportions)

)

summary_df

column count proportion
1 movement_deepSSF 70366  0.679484
2 prob_movement_ssf_2p 33192 0.320516

Next-step

validation_next_step <- validation_all %>
dplyr: :select(
# id, x_, y_, t_, t2_, hour_t1, hour_t2, yday_t1l, yday_t2,
# grep("next_step", colnames(validation_all)),
# prob_next_step_ssf_Op,
prob_next_step_ssf_2p,
next_step_deepSSF,
# next_step_deepSSF_S2

)
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validation_next_step_prop <- get_max_column(validation_next_step)

max_column_counts <- table(validation_next_step_prop$max_column)
max_column_proportions <- prop.table(max_column_counts)

summary_df <- data.frame(
column = names(max_column_counts),
count = as.numeric(max_column_counts),
proportion = as.numeric(max_column_proportions)

)

summary_df

column count proportion
1 next_step_deepSSF 65888 0.6362425
2 prob_next_step_ssf_2p 37670 0.3637575

Combine the lengthened data frames

validation_all_long <- bind_rows(validation_ssf_long,
validation_deepssf_long,
validation_deepssf_s2_long)

validation_all_long <- validation_all_long %>} filter(value > 0)

Prepare data frame for plotting

# Wet season is from November to April
months wet <- c(1:4, 11:12)

validation_all_long <- validation_all_long %>7%
mutate(sample = ifelse(id == focal_id, "in_sample", "out_sample"),
yday_t2_2018 = ifelse(year_t2 == 2018, yday_t2, yday_t2 + 365),
week t2 = week(t2 ),
month_t2 = month(t2_),
season = ifelse(month_t2 %in) months_wet, "wet", "dry"))

head(validation_all_long)
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# A tibble: 6 x 19
id X_ y_ t_ x2_ y2_ t2_

<dbl> <dbl> <dbl> <dttm> <dbl> <dbl> <dttm>

2005 41922. -1435654. 2018-07-25 12:04:39 41779. -1.44e6 2018-07-25 13:04:17
2005 41922. -1435654. 2018-07-25 12:04:39 41779. -1.44e6 2018-07-25 13:04:17
2005 41779. -1435601. 2018-07-25 13:04:17 41841. -1.44e6 2018-07-25 14:04:39
2005 41779. -1435601. 2018-07-25 13:04:17 41841. -1.44e6 2018-07-25 14:04:39
2005 41841. -1435635. 2018-07-25 14:04:39 41655. -1.44e6 2018-07-25 15:04:27
2005 41841. -1435635. 2018-07-25 14:04:39 41655. -1.44e6 2018-07-25 15:04:27
i 12 more variables: hour_t2 <dbl>, yday_t2 <dbl>, year_t2 <dbl>,

full_name <chr>, model <chr>, probability <chr>, value <dbl>, sample <chr>,

yday_t2_2018 <dbl>, week_t2 <dbl>, month_t2 <dbl>, season <chr>

H HE H OO WO

Prepare sliding window

The predicted probabilities are very noisy, so we apply some smoothing by using a sliding
window (rolling mean).

We first need a function to calculate the summary statistics for each window.

window_summary <- function(data) {
summarise (data,
average_time = mean(t2_, na.rm = T),
average_prob = mean(value, na.rm = T),
q025 = quantile(value, probs = 0.025, na.rm = T),

25 = quantile(value, probs = 0.25, na.rm = T),
950 = quantile(value, probs = 0.5, na.rm = T),
q75 = quantile(value, probs = 0.75, na.rm = T),
q975 = quantile(value, probs = 0.975, na.rm = T)
)

}

All IDs

window_width <- 15 # number of days in each window - should be odd
# how many observations before and after the current observation
before_after <- (window_width - 1) / 2

# ensure that the data is sorted by time (while respecting the id and model grouping)
all_data <- validation_all_long %>%

group_by(id, model, probability) %>%

arrange(t2_)

12



# apply the sliding window function

validation_all_sliding period <- all_data %>%

slide_period_dfr(
all_data$t2_,

# specify that we want to split by days (and slide across at daily intervals)

"day",

# our window function (calculates mean and quantiles for each window)

window_summary,

# how many days before and after the current observation we want to include in the windo

.before = before_after,

.after = before_after

head(validation_all_sliding_period, 10)

# A tibble:
# Groups:

id
<dbl>
2005
2005
2005
2005
2005
2005
2005
2005
2005
2005

O© 0 N O O W N =

[y
o

10 x 10

id, model [4]
probability average_time

model
<chr>
deepSSF
deepSSF
deepSSF
deepSSF_S2
deepSSF_S2
deepSSF_S2
ssf_Op
ssf_Op
ssf_Op
ssf_2p

<chr>
habitat
move
next_step
habitat
move
next_step
habitat
move
next_step
habitat

<dttm>

2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

37:
37:
37:
37:
37:
37:
37:
37:
37:
37:

# i 3 more variables: q50 <dbl>, q75 <dbl>, q975

average_prob

58
58
58
58
58
58
58
58
58
58
<dbl>

O O O O O O OO oo

<dbl>

.000107
.0964
.0970
.000152
.0866
.0895
.000101
.00167
.00171
.000107

O N NNR Wk RS

q025
<dbl>

.43e-5
.83e-5
.15e-5
.60e-5
.61le-5
.31e-6
.88e-5
.77e-5
.0be-5
.79e-5

O W WO wWww-NWWF

q25
<dbl>

.03e-4
.26e-4
.3be-4
.60e-5
.16e-4
.42e-4
.57e-5
.82e-4
.80e-4
.13e-5

We can see from the function above that we have the average time, average probability,
and quantiles for eac overlapping window, for each model and probability surface (habitat,
movement and next-step).

Out-of-sample validation

The above sliding windows are for each individual separately, but we also want to calculate
the average and quantiles for all out-of-sample individuals together.

13



Calculating mean and quantiles

# out-of-sample data - all ids but the focal id
00S_data <- validation_all_long %>%

filter(!'id == focal id) %>%

group_by(model, probability) %>%

arrange (t2_)

validation_all_sliding period_00S <- 00S_data %>%
slide_period_dfr(
00S_data$t2_,
"day",
window_summary,
.before = before_after,
.after = before_after

“summarise()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups’ argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups® argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups’ argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups’ argument.
“summarise()~ has grouped output by 'model'. You can override using the
T.groups’ argument.
“summarise()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise ()~ has grouped output by 'model'. You can override using the
T.groups  argument.
“summarise()” has grouped output by 'model'. You can override using the
T.groups’ argument.
“summarise ()~ has grouped output by 'model'. You can override using the
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T.groups’ argument.
“summarise ()~ has grouped
T.groups’ argument.
“summarise()~ has grouped
T.groups’ argument.
“summarise()~ has grouped
T.groups  argument.
“summarise()~ has grouped
T.groups  argument.
“summarise()~ has grouped
T.groups’ argument.
“summarise ()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups  argument.
“summarise() * has grouped
T.groups” argument.
“summarise () * has grouped
T.groups  argument.
“summarise () * has grouped
T.groups’ argument.
“summarise ()~ has grouped
T.groups’ argument.
“summarise()” has grouped
T.groups’ argument.
“summarise()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups’ argument.
“summarise()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups’ argument.
“summarise ()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups  argument.
“summarise ()~ has grouped
T.groups’ argument.
“summarise ()~ has grouped
T.groups® argument.
“summarise () ” has grouped
T.groups’ argument.
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T.groups’ argument.

“summarise ()~ has grouped output by 'model'.

T.groups’ argument.

head(validation_all_sliding_period_00S, 10)

# A tibble:
# Groups:
model
<chr>
deepSSF
deepSSF
deepSSF
deepSSF~
deepSSF~
deepSSF~
ssf_Op
ssf_Op
ssf_Op
ssf_2p

© 00 N O O WN -

10

10 x 9
model [4]

probability average_time

<chr>
habitat
move
next_step
habitat
move
next_step
habitat
move
next_step
habitat

<dttm>

2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29
2018-07-29

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

# 1 2 more variables: q75 <dbl>, q975

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

54
54
54
54
54
54
54
54
54
54

<dbl>

You can override using the

average_prob

O O OO O O O O o o

<dbl>

.000102
.0600
.0594
.000119
.0774
.0752
.0000982
.00174
.00176
.000105

O W W NP> 00 00 00—~ N

q025
<dbl>

.67e-5
.30e-5
.58e-6
.44e-6
.19e-6
.24e-6
.17e-5
.70e-5
.63e-5
.50e-5

Now the summaries are calculated for all out-of-sample individuals together.

Habitat selection across the tracking period

All models

O W W oo NNOIN Ww-AN

g25
<dbl>

.ble-5
.02e-4
.84e-4
.32e-5
.T4e-4
.33e-4
.64e-5
.85e-4
.79e-4
.60e-5

T T = (o I S

q50
<dbl>

.04e-4
.03e-3
.93e-3
.43e-5
.98e-3
.85e-3
.65e-5
.24e-3
.27e-3
.01le-4

The solid coloured lines show the average probability for the focal individual that the model
was fitted to, and the shaded ribbon is the 50% quantile (there is high variability between
probability values, so for clarity we omitted the 95% quantiles). The thin coloured lines are
the average probability values for 12 individuals that the model was not fitted to, and are
therefore out-of-sample validation data. The dashed coloured lines are the mean values for
each model for all of the out-of-sample individuals.

We also show the ‘null’ probability, i.e. if the selection was completely random, which is just

the probability divided equally between all cells.

# if there were uniform probabilities (i.e. no selection)

uniform_prob <- 1/(101%101)

ribbon_50_alpha <- 0.2
primary_linewidth <- 0.5
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00S_mean_linewidth <- 0.5
secondary_linewidth <- 0.04

ggplot() +

# dashed lines containing the SSF probabilities (for zooming into in the paper)
geom_hline(yintercept = 0.6e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 1.5e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding_period %>%
filter(probability == "habitat" &
id == focal_id),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "habitat" &
'id == focal_id),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "habitat"),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding_period 7%>%
filter(probability == "habitat" &
id == focal_id),
aes(x = average_time,
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y = average_prob,

colour = model,

group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale fill manual(name = "Model",
values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale _color _manual(name = "Model",
values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_y_continuous("Probability value") +
scale_x_datetime("Date") +
theme bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_all_sliding_ ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The first thing to note is difference in magnitude between the deepSSF and the SSF pre-
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dictions. The deepSSF predicted probabilities are often much higher, but can also be much
lower, suggesting that the deepSSF models are more ‘confident’.

The deepSSF and deepSSF S2 models both performed particularly well between December
2018 and July 2019, (wet-season and early dry-season), although only the deepSSF S2 model
performs well outside of this period (for most of the dry season). This suggests that the
derived covariates may lack information that is relevant to buffalo during this period, such
as a representation of water.

The higher performance of the deepSSF S2 predictions is also echoed in the out-of-sample
predictions, which are generally quite a lot higher than the other models.

deepSSF models

gegplot() +

# dashed lines containing the SSF probabilities (for zooming into in the paper)
geom_hline(yintercept = 0.6e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 1.5e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding period %>%
filter(probability == "habitat" &
id == focal_id &
grepl ("deepSSF", model)),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "habitat" &
lid == focal_id &
grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,

group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
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geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "habitat" &
grepl("deepSSF", model)),

aes(x = average_time,
y = average_prob,
colour = model),

linewidth = 00S_mean_linewidth,

linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding period %>%
filter(probability == "habitat" &
id == focal_id &
grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale_fill_manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_color_manual(name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_datetime("Date") +
theme _bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_deepSSF_sliding_", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

SSF models

ggplot() +

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding period %>%
filter(probability == "habitat",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "habitat",
lid == focal_id,
lgrepl ("deepSSF", model)),
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aes(x = average_time,

y = average_prob,

colour = model,

group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "habitat" &
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding period %>%
filter(probability == "habitat",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale fill manual(name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right",

labels = function(x) format(x, scientific = TRUE)) +

scale_x_datetime("Date") +
coord_cartesian(ylim = c(0.6e-4, 1.5e-4)) +
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theme _bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_SSF_sliding ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

There isn’t a clear seasonal trend with the SSF predictions, but in general the models do
better than the null model, although the out-of-sample predictions vary around the null
model.

Movement probability across the tracking period

All models

ggplot() +
# dashed lines containing the SSF probabilities

geom_hline(yintercept = 0.6e-4, alpha = 0.25, linetype = "dashed", linewidth
geom_hline(yintercept = 1.5e-4, alpha = 0.25, linetype = "dashed", linewidth

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding_period %>%
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filter(probability == "move" &
id == focal_id),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding period %>%
filter(probability == "move" &
lid == focal _id),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "move"),

aes(x = average_time,

y = average_prob,

colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding_period %>%
filter(probability == "move" &
id == focal_id),
aes(x = average_time,
y = average_prob,

colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15)

scale fill manual(name = "Model",

values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +
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scale_color_manual (name = "Model",
values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_y_continuous("Probability value") +
scale_x_datetime("Date") +
theme bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust

1))
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# ggsave(pasteO("outputs/validation_all_move_sliding ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The movement probabilities for the deepSSF models are much higher than the for the SSF
models, which I suspect is mostly due to the mixture of distributions in the deepSSF models.
When the buffalo are in a low movement period, there can be very high probability in the
few cells close to the buffalo, which is often accurate (when the predicted probability is 0.2
that means all of the probability mass is shared between only 5 cells. I don’t think the SSF
movement kernel has the same flexibility to capture this.

This also comes out very clearly in the hourly predictions, with much higher predicted
probabilities during the low movement periods.
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deepSSF models

ggplot() +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = O, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 9e-3, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding period %>%
filter(probability == "move" &
id == focal_id &
grepl("deepSSF", model)),
aes(x = average_time,
ymin = 925,
ymax = q75,
fill = model,
group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "move" &
lid == focal_id &
grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "move" &

grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line

geom_line(data = validation_all_sliding_period %>’
filter(probability == "move" &

45



id == focal_id &
grepl ("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale fill manual(name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_color_manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_datetime("Date") +
theme bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_deepSSF_move_sliding_",

# width = 80, height = 80, units = "mm", 600)

dpi =

SSF models

ggplot() +

# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding_period %>%
filter(probability == "move",
id == focal_id,
lgrepl ("deepSSF", model)),

aes(x = average_time,
ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "move",
lid == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "move" &

lgrepl ("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding_period %>%
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filter(probability == "move",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale_fill manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right") +

scale_x_datetime("Date") +
coord_cartesian(ylim = c(0, 9e-3)) +
theme bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_SSF_move_sliding_ ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The temporally dynamic models have consistently higher probabilities of movement than
the static models, which again is likely due to the concentration of the movement kernel
during the low movement periods, where the probability values are distributed across much
fewer cells.

Next-step probabilities across the tracking period

The next-step probability values are very similar to the movement probabilities due to the
concentration of the probability mass in fewer cells that are closer to the buffalo, whereas
the habitat selection probabilities are distributed across all of the local layers, so they’re not
actually that informative beyond the movement probabilities.

All models

ggplot() +
# dashed lines containing the SSF probability values
geom_hline(yintercept = 0.6e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 1.5e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
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# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding_period %>%
filter(probability == "next_step" &
id == focal_id),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding period %>%
filter(probability == "next_step" &
lid == focal_id),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "next_step"),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding_period %>%
filter(probability == "next_step" &
id == focal_id),
aes(x = average_time,
y = average_prob,
colour = model,

group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15)

scale_fill manual (name = "Model",
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values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#E25834", "#000000", "#0096B5", "#26185F"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_y_continuous("Probability value") +
scale _x_datetime("Date") +
theme _bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_all next_step_sliding ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

deepSSF models
ggplot () +
# dashed lines containing the SSF probability values

geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 9e-3, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
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# in sample 507 ribbon
geom_ribbon(data = validation_all_sliding_period %>%

filter(probability == "next_step" &

aes(x =
ymin
ymax
£i11

group = interaction(id, model)),

alpha =

i

g

d == focal_id &
repl("deepSSF", model)),

average_time,

q25,
q75,
model,

ribbon_50_alpha) +

# out-of-sample thin line for each individual

geom_line(data = validation_all_sliding period %>%
filter(probability == "next_step" &

lid == focal_id &
grepl ("deepSSF", model)),
aes(x = average_time,
y = average_prob,

colour

model,

group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals

geom_line(data = validation_all_sliding_period_00S
filter(probability == "next_step" &

grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,

colour

model) ,

linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean lin

geom_line(data = validation_all_sliding_period %>%
filter(probability == "next_step" &

e

id == focal_id &
grepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,

colour

group
linewidth

model,
interaction(id, model)),
primary_linewidth) +
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# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale_fill _manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale _color _manual(name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_datetime("Date") +
theme bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust

1))
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# ggsave(pasteO("outputs/validation_deepSSF_next_step_sliding_", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

SSF models

ggplot () +
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# in sample 50% ribbon
geom_ribbon(data = validation_all_sliding_period %>%
filter(probability == "next_step",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_sliding_period %>%
filter(probability == "next_step",
lid == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line for all individuals
geom_line(data = validation_all_sliding_period_00S %>%
filter(probability == "next_step" &
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_sliding period %>%
filter(probability == "next_step",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = average_time,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +
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# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.15) +

scale_fill _manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale _color _manual(name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right") +

scale_x_datetime("Date") +
coord_cartesian(ylim = c(0, 9e-3)) +
theme_bw() +
theme (legend.position = "bottom",
axis.text.x = element_text(angle = 30, hjust = 1))
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# ggsave(pasteO("outputs/validation_SSF_next_step_sliding ", window_width, "days.png"),
# width = 80, height = 80, units = "mm", dpi = 600)
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Hourly probabilities

We can also calculate the habitat selection, movement and next-step probabilities for each
hour of the day, indicating when the models are accurate (or notr) at different times of the

day.

For this we don’t need a sliding window, we will just bin by the hour of the day.

Here we just show the hourly probabilities across the whole tracking period, but we could
also split this up into seasons and assess how accurate the models are during the wet and

dry seasons.

# grouping by each individual, model and hour of the day
validation_all_quantiles_hourly <- validation_all_long %>%
group_by(id, model, probability, hour_t2) %>%
summarise(average_prob = mean(value, na.rm = T),
T,

sd_prob = sd(value, na.rm =
q025 = quantile(value, probs

925 = quantile(value, probs
950 = quantile(value, probs
q75 = quantile(value, probs

q975 = quantile(value, probs
)

“summarise ()~ has grouped output by 'id',

override using the "~ .groups”™ argument.

head(validation_all_quantiles_hourly)

**

A tibble: 6 x 11
Groups: id, model, probability [1]

+*

0.025, na.rm
0.25, na.rm =
0.5, na.rm = T

0.75, na.rm =
0.975, na.rm

'model ',

id model  probability hour_t2 average_prob

O O O O O

<dbl>

.000249
.000233
.000239
.000232
.000241
0.

000229

<dbl> <chr> <chr> <dbl>
1 2005 deepSSF habitat 0
2 2005 deepSSF habitat 1
3 2005 deepSSF habitat 2
4 2005 deepSSF habitat 3
5 2005 deepSSF habitat 4
6 2005 deepSSF habitat 5
# 1 2 more variables: q75 <dbl>, q975 <dbl>
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'probability'. You can

sd_prob

W wwwNnNw

<dbl>

.21le-4
.95e-4
.05e-4
.09e-4
.21e-4
.20e-4

=T)’

T,
),
T,

= T)

NN NDNDN

q025
<dbl>

.50e-5
.77e-5
.69e-5
.89e-5
.86e-5
.96e-5

I I

q25
<dbl>

.03e-4
.78e-5
.89e-5
.04e-4
.06e-4
.06e-4

= Y Sy

g50
<dbl>

.34e-4
.31e-4
.32e-4
.31le-4
.30e-4
.24e-4



# out-of-sample ids
# grouping by each model and hour of the day (combining all 00S individuals to get the avera
validation_all_quantiles_hourly_00S <- validation_all_long %>%
filter(!id == focal_id) %>%
group_by (model, probability, hour_t2) %>%
summarise(average_prob = mean(value, na.rm = T),
sd_prob = sd(value, na.rm = T),
q025 = quantile(value, probs = 0.025, na.rm = T),

925 = quantile(value, probs = 0.25, na.rm = T),
950 = quantile(value, probs = 0.5, na.rm = T),
q75 = quantile(value, probs = 0.75, na.rm = T),
q975 = quantile(value, probs = 0.975, na.rm = T)
)
“summarise ()~ has grouped output by 'model', 'probability'. You can override

using the "~ .groups” argument.

head(validation_all_quantiles_hourly_00S)

# A tibble: 6 x 10
# Groups: model, probability [1]

model probability hour_t2 average_prob sd_prob q025 g25 g50 q75

<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 deep~ habitat 0 0.0000941 1.08e-4 4.44e-6 3.73e-5 7.43e-5 1.25e-4
2 deep~ habitat 1 0.0000952 1.22e-4 4.44e-6 3.61le-5 7.41e-5 1.25e-4
3 deep~ habitat 2 0.0000968 1.19e-4 4.54e-6 3.64e-5 7.53e-5 1.26e-4
4 deep~ habitat 3 0.0000989 1.18e-4 4.64e-6 3.75e-5 7.95e-5 1.30e-4
5 deep~ habitat 4 0.000101 1.05e-4 5.22e-6 4.17e-5 8.81le-5 1.35e-4
6 deep~ habitat 5 0.000102 9.73e-5 6.81e-6 4.57e-5 9.63e-5 1.34e-4
# i 1 more variable: q975 <dbl>

Habitat selection across the day

All models

ggplot() +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 3e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
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# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
id == focal_id),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
lid == focal_id),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = 0.075) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%
filter(probability == "habitat"),
aes(x = hour_t2,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
id == focal_id),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25)

scale_fill manual (name = "Model",
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values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_color_manual(name = "Model",
values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_y_continuous("Probability value") +
scale_x_continuous("Hour", breaks = seq(0,24,6)) +
theme _bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_all_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The deepSSF models both predict well in the evening (at least in-sample), but only the
deepSSF S2 predicts well during the middle of the day, again suggesting that there is infor-
mation in the Sentinel-2 layers that isn’t present in the derived covariates.

The out-of-sample predictions are also much higher for the deepSSF S2 model, suggesting
that it is better at generalising to new data.
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deepSSF models

ggplot() +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = 0.6e-4, alpha = 0.25, linetype = "dashed", linewidth
geom_hline(yintercept = 1.5e-4, alpha = 0.25, linetype = "dashed", linewidth

# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
ymin = 925,
ymax = q75,
fill = model,
group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
lid == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%
filter(probability == "habitat" &
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line

geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
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id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_color_manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_continuous ("Hour", seq(0,24,6)) +
coord_cartesian(ylim = c(0, 4e-4)) +
theme bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_deepSSF_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

SSF models

ggplot() +

# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
id == focal_id,
lgrepl ("deepSSF", model)),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "habitat",
lid == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%

filter(probability == "habitat" &
lgrepl ("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,

colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>7
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filter(probability == "habitat",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for the null probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right",
labels = function(x) format(x, scientific = TRUE)) +

scale_x_continuous("Hour", seq(0,24,6)) +
coord_cartesian(ylim = c(0.6e-4, 1.5e-4)) +
theme_bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_SSF_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The SSF model with temporal dynamics had higher prediction accuracy than the SSF model
without temporal dynamics overall (in- and out-of-sample), but it was more variable through-
out the day, and was quite poor between midnight and about bam.

Movement probability across the day

All models

ggplot() +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
3e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

geom_hline(yintercept

# in sample 507 ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id),
aes(x = hour t2,
ymin = 25,
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ymax = q75,

fill model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",

lid == focal_id),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = 0.075) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%
filter(probability == "move"),
aes(x = hour_t2,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = 0.35) +

geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill manual(name = "Model",
values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_color_manual (name = "Model",

values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +
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scale_y_continuous("Probability value") +
scale_x_continuous ("Hour", breaks = seq(0,24,6)) +
theme_bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_all_move_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The movement probabilities are much lower during the high movement periods. This is be-
cause there are many more cells that the buffalo are likely to move to, and so the probability
of moving to any one cell is lower, and the model must spread the prediction probability
across many more cells.

The SSF probabilities are also much much lower than the deepSSF probabilities, as explained
for the movement probabilities across the tracking period.

deepSSF models

ggplot() +

# dashed lines containing the SSF probabilities

geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

geom_hline(yintercept
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# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",

lid == focal_id,
grepl ("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%

filter(probability == "move" &
grepl("deepSSF", model)),
aes(x = hour_t2,

y = average_prob,

colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +
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# dashed line for uniform probability

geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill _manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_color_manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_continuous("Hour", seq(0,24,6)) +
theme bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_deepSSF_move_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

SSF models

ggplot () +
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# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",

lid == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%

filter(probability == "move" &
lgrepl("deepSSF", model)),
aes(x = hour_t2,

y = average_prob,

colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "move",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +
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# dashed line for uniform probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill _manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale _color _manual(name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right") +

scale_x_continuous("Hour", seq(0,24,6)) +
coord_cartesian(ylim = c(0, 1.25e-2)) +
theme_bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_SSF_move_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

The SSF models perform similarly, expect at night, where the temporally dynamic performs
much better in- and out-of-sample.
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Next-step probability across the day

All models

ggplot () +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
3e-4, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

geom_hline(yintercept

# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
id == focal_id),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
1id == focal_id),
aes(x = hour_t2,

y = average_prob,

colour = model,

group = interaction(id, model)),
linewidth = 0.075) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S %>
filter(probability == "move" &
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
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filter(probability == "next_step",
id == focal_id),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = 0.35) +

# dashed line for uniform probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale_fill _manual (name = "Model",
values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#AF3602", "#000000", "#0096B5", "#000000"),
labels = c("deepSSF", "deepSSF S2", "SSF", "SSF 2p")) +

scale_y_continuous("Probability value") +
scale_x_continuous("Hour", breaks = seq(0,24,6)) +
theme bw() +

theme (legend.position = "bottom")

Probability value
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# ggsave(pasteO("outputs/validation_all_next_step_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

deepSSF models

ggplot() +

# dashed lines containing the SSF probabilities
geom_hline(yintercept = 0, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +
geom_hline(yintercept = 1.25e-2, alpha = 0.25, linetype = "dashed", linewidth = 0.25) +

# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
lid == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S %>
filter(probability == "next_step" &
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model),
linewidth = 00S_mean_linewidth,
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linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
id == focal_id,
grepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,
colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for uniform probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25)

scale_fill manual(name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_color_manual (name = "Model",
values = c("#E25834", "#000000"),
labels = c("deepSSF", "deepSSF S2")) +

scale_y_continuous("Probability value") +
scale_x_continuous("Hour", seq(0,24,6)) +
theme_bw() +

theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_deepSSF_next_step_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)

SSF models

gegplot() +

# in sample 50% ribbon
geom_ribbon(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,

ymin = 925,
ymax = q75,
fill = model,

group = interaction(id, model)),
alpha = ribbon_50_alpha) +

# out-of-sample thin line for each individual
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
lid == focal_id,
lgrepl("deepSSF", model)),
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aes(x = hour_t2,

y = average_prob,

colour = model,

group = interaction(id, model)),
linewidth = secondary_linewidth) +

# out-of-sample mean line
geom_line(data = validation_all_quantiles_hourly_00S 7>%
filter(probability == "next_step" &
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,

colour = model),
linewidth = 00S_mean_linewidth,
linetype = "dashed") +

# in sample mean line
geom_line(data = validation_all_quantiles_hourly %>%
filter(probability == "next_step",
id == focal_id,
lgrepl("deepSSF", model)),
aes(x = hour_t2,
y = average_prob,

colour = model,
group = interaction(id, model)),
linewidth = primary_linewidth) +

# dashed line for uniform probability
geom_hline(yintercept = uniform_prob, linetype = "dashed", linewidth = 0.25) +

scale fill manual(name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_color_manual (name = "Model",
values = c("#0096B5", "#26185F"),
labels = c("SSF", "SSF 2p")) +

scale_y_continuous("Probability value",
position = "right") +

scale_x_continuous("Hour", seq(0,24,6)) +

coord_cartesian(ylim = c(0, 1.25e-2)) +
theme bw() +
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theme (legend.position = "bottom")
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# ggsave(pasteO("outputs/validation_SSF_next_step_hourly.png"),
# width = 80, height = 80, units = "mm", dpi = 600)
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